A New Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization 85 A New Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization

نویسندگان

  • Chih-Hao Lin
  • Pei-Ling Lin
چکیده

Multi-objective optimization (MO) is a highly demanding research topic because many realworld optimization problems consist of contradictory criteria or objectives. Considering these competing objectives concurrently, a multi-objective optimization problem (MOP) can be formulated as finding the best possible solutions that satisfy these objectives under different tradeoff situations. A family of solutions in the feasible solution space forms a Pareto-optimal front, which describes the tradeoff among several contradictory objectives of an MOP. Generally, there are two goals in finding the Pareto-optimal front of a MOP: 1) to converge solutions as near as possible to the Pareto-optimal front; and 2) to distribute solutions as diverse as possible over the obtained non-dominated front. These two goals cause enormous search space in MOPs and let deterministic algorithms feel difficult to obtain the Pareto-optimal solutions. Therefore, satisfying these two goals simultaneously is a principal challenge for any algorithm to deal with MOPs (Dias & Vasconcelos, 2002). In recent years, several evolutionary algorithms (EAs) have been proposed to solve MOPs. For example, the strength Pareto evolutionary algorithm (SPEA) (Zitzler et al., 2000) and the revised non-dominated sorting genetic algorithm (NSGA-II) (Deb et al., 2002) are two most famous algorithms. Several extensions of genetic algorithms (GAs) for dealing with MOPs are also proposed, such as the niche Pareto genetic algorithm (NPGA) (Horn et al., 1994), the chaos-genetic algorithm (CGA) (Qi et al., 2006), and the real jumping gene genetic algorithm (RJGGA) (Ripon et al., 2007). However, most existing GAs only evaluate each chromosome by its fitness value regardless of the schema structure, which is a gene pattern defined by fixing the values of specific gene loci within a chromosome. The schemata theorem proved by Goldberg in 1989 is a central result of GA’s theory in which a larger of effective genomes implies a more efficient of searching ability for a GA (Goldberg, 1989). Inspired by the outstanding literature of Kalyanmoy Deb, this study proposes an evaluative crossover operator to incorporate with the original NSGA-II. The proposed evaluative version of NSGA-II, named E-NSGA-II, can further enhance the advantages of the fast nondominated sorting and the diversity preservation of the NSGA-II for improving the quality of the Pareto-optimal solutions in MOPs. The proposed evaluative crossover imitates the gene-therapy process at the forefront of medicine and therefore integrates a new gene6

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm

This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...

متن کامل

Thermal-Economic Optimization of Shell and Tube Heat Exchanger by using a new Multi-Objective optimization method

Many studies are performed by researchers about Shell and Tube Heat Exchanger but the Multi-Objective Big Bang-Big Crunch algorithm (MOBBA) technique has never been used in such studies. This paper presents application of Thermal-Economic Multi-Objective Optimization of Shell and Tube Heat Exchanger Using MOBBA. For optimal design of a shell and tube heat exchanger, it was first thermally model...

متن کامل

Solving ‎‎‎Multi-objective Optimal Control Problems of chemical ‎processes ‎using ‎Hybrid ‎Evolutionary ‎Algorithm

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...

متن کامل

Multi-objective robust optimization model for social responsible closed-loop supply chain solved by non-dominated sorting genetic algorithm

In this study a supply chain network design model has been developed considering both forward and reverse flows through the supply chain. Total Cost, environmental factors such as CO2 emission, and social factors such as employment and fairness in providing job opportunities are considered in three separate objective functions. The model seeks to optimize the facility location proble...

متن کامل

A Non-dominated Sorting Ant Colony Optimization Algorithm Approach to the Bi-objective Multi-vehicle Allocation of Customers to Distribution Centers

Distribution centers (DCs) play important role in maintaining the uninterrupted flow of goods and materials between the manufacturers and their customers.This paper proposes a mathematical model as the bi-objective capacitated multi-vehicle allocation of customers to distribution centers. An evolutionary algorithm named non-dominated sorting ant colony optimization (NSACO) is used as the optimi...

متن کامل

A method for identifying software components based on Non-dominated Sorting Genetic Algorithm

Identifying the appropriate software components in the software design phase is a vital task in the field of software engineering and is considered as an important way to increase the software maintenance capability. Nowadays, many methods for identifying components such as graph partitioning and clustering are presented, but most of these methods are based on expert opinion and have poor accur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012